Instructions for the conduct of the Listening Comprehension Examination

The teacher should instruct the candidates to answer the questions on the paper provided. The following procedure for reading the Listening Comprehension passage is to be explained to the candidates immediately before proceeding with the examination.

*You have been given a sheet containing the Listening Comprehension questions. I shall first read through the questions and then read the passage at normal reading speed. You may take notes on the blank sheet provided during the reading. After this reading there will be a pause of another three minutes to allow you to answer some of the questions. The passage will be read a second time and you may take further notes and answer the rest of the questions. After this second reading you will be given a further three minutes for a final revision of answers.*

a. 3 minutes - Students read out questions silently.
b. 3 minutes - First reading aloud of passage while students take notes.
c. 3 minutes - Students may answer questions.
d. 3 minutes - Second reading of passage and possibility of answering questions.
e. 3 minutes - Final revision.
Lightning Can Strike Twice

Cloud-to-ground lightning bolts are a common phenomenon—about 100 strike Earth’s surface every single second—yet their power is extraordinary. Each bolt can contain up to one billion volts of electricity.

This enormous electrical discharge is caused by an imbalance between positive and negative charges. During a storm, colliding particles of rain, ice, or snow increase this imbalance and often negatively charge the lower reaches of storm clouds. Objects on the ground, like steeples, trees, and the Earth itself, become positively charged—creating an imbalance that nature seeks to remedy by passing current between the two charges.

A step-like series of negative charges, called a stepped leader, works its way incrementally downward from the bottom of a storm cloud toward the Earth. Each of these segments is about 150 feet (46 meters) long. When the lowermost step comes within 150 feet (46 meters) of a positively charged object it is met by a climbing surge of positive electricity, called a streamer, which can rise up through a building, a tree, or even a person. The process forms a channel through which electricity is transferred as lightning.

Some types of lightning, including the most common types, never leave the clouds but travel between differently charged areas within or between clouds. Other rare forms can be sparked by extreme forest fires, volcanic eruptions, and snowstorms. Ball lightning, a small, charged sphere that floats, glows, and bounces along oblivious to the laws of gravity or physics, still puzzles scientists. Lightning is extremely hot—a flash can heat the air around it to temperatures five times hotter than the sun’s surface. This heat causes surrounding air to rapidly expand and vibrate, which creates the pealing thunder we hear a short time after seeing a lightning flash.

Lightning is not only spectacular, it’s dangerous. About 2,000 people are killed worldwide by lightning each year. Hundreds more survive strikes but suffer from a variety of lasting symptoms, including memory loss, dizziness, weakness, numbness, and other life-altering illnesses.